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ROBUST LINEAR FILTERING FOR MULTIVARIABLE STATIONARY TIME SERIES

Haralampos Tsaknakis and P. Papantoni-Kazakos
University of Connecticut

U-157
Storrs, Connecticut 06268

S"-" Abstract

- The problem of asymptotic, non-causal linear filtering for statistically

contaminated multivariable stationary time series is considered. The spectra

of both the signal and the noise components of the observation process are

" " assumed to belong to certain convex and compact classes. The minimax criterion

of optimality is adopted, and for some specific spectral classes the corres-

ponding solutions are found. The performance of those solutions is studied,

where the performance criteria used are efficiency, error variation within the

classes, and breakdown curves or points. Some examples are studied quantit vely.

Research supported by the Air Force Office of Scientific Research under Grant
AFOSR-78-3695.



1. Introduction

We consider non-causal filtering for stationary information processes embedded

in additive noise. The problem and its solution are well established when both

* the information and noise processes are statistically well-known, stationary, and

mutually uncorrelated. The reader may refer to the work by Kolmogorov [4], andU
-. to the books by Wiener (9] and Hannan [2]. Let us now assume that the information

and noise processes are statistically contaminated. Then, a single non-causal

filter is sought that will provide satisfactory performance for every information

". process-noise process pair, within the statistically contaminated classes. If

satisfactory performance implies qualitative robustness, then a nonlinear opera-

tion on the data of the information process should be in general imposed, before

-. transmission through the noise channel. Such a stationary nonlinear operation maps

a compact class of stationary processes onto another compact class of stationary

processes. If the nonlinear operation is appropriately designed, a linear filter will

maintain the characteristics of qualitative robustness. For qualitative analysis of

the above, the interested reader may seek reference [6]. From now on we will assume

that a proper nonlinear operation has been adopted, and we will concentrate on the

" stationary processes induced by this operation and the class of information processes.

We will name those induced processes, information processes. We will assume that the

noise process lies within another compact class of stationary processes, and that the

members of this class and the members of the class of information processes are mutually

. uncorrelated. Then, we will focus on the design of a robust linear filter, adopting a

*" saddle point game theoretic approach. We point out here that the same approach was

*. adopted in [8], where noiseless robust prediction and interpolation of multivariable

stationary processes was considered. Also, considering robust linear filtering for

scalar, stationary information and noise processes, the interested reader may seek

* references [3] and [7].

L
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In the present paper, we consider the robust linear non-causal filtering

problem, for multivariable stationary information and noise processes. We adopt

Nasymptotic linear operations, and we formulate the problem as a game with saddle
point solution. We find this solution explicitly, when the information and noise

*' processes lie within either one of two compact classes of multivariable stationary

processes. One of the compact classes represents linear contamination of a nominal

multivariable process. The other class includes multivariable processes with fixed

energy on prespecified frequency quantiles.

-. The organization of the paper is as follows. In section 2, we formulate the

12 problem, and we define the compact classes of multivariable stationary processes.

*- In section 3, we find the robust solution, when the compact classes for the infor-

mation and the noise processes both represent linear contamination of a nominal

multivariable process. In section 4, we find the robust linear filter when one of

the compact classes represents linear contamination of a nominal multivariable

process, and the other compact class includes processes with fixed energy on pre-

specified frequency quantiles. In section 5, we find the robust linear filter,

when both the compact classes include processes with fixed energy on prespecified

.. frequency quantiles. In section 6, we present some criteria for the performance

. evaluation of the robust filters in sections 3, 4, and 5, and we use those criteria

to study the performance of the robust filters in some specific examples.

L"

..............................
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2. Problem Formulation

We consider the asymptotic non-causal linear filtering problem for stationary

multivariable time series, when the statistical structure of both the information

and the noise processes is vaguely or incompletely specified. We assume that the

noise process is additive to the information process, and that the two processes

Ii are zero mean and mutually uncorrelated. Let xn(j) ; = ... , -1, 0, 1, ... denote

a sequence of n-dimensional data vectors from the multivariable information process.

nLet Y (j) ; j .. • -1, 0, 1,... denote such a sequence from the noise process.

Then, the observation data sequence Z n(j) ; = ... , -1. 0, 1, ... is such that

Zn(j) = Xn(j) + yn(j) ; V j, and the noncausal linear filter performs the operation

A: -"Zn(k) to extract the vector Xn(o); where An is some sequence of constant
k=-k

nxn matrices (whose properties will be stated later), such that in the frequency

A 'n jkw&
'*: :. domain the matrix polynomial H (W) = = k e exists, and it describes the

" linear filter uniquely. In the parametric linear filter problem, the information

" i and noise processes are considered well-known. Then, if the spectral density matrices

of both those processes exist (as in [8]), and they are denoted respectively by
n n

f n() and f (), they are both Hermitian and nonnegative definite, and their
-s N

I elements are Lebesque integrable functions on the measurable space ([-r,], 8);

where B the Borel field on [-rr,r]. If the asumptotic non-causal linear filter
'Jr

*i signified by H () is adopted, and the mean square performance criterion is con---n

sidered, it is then well-known [2] that the error e(f n fn* H ) induced is given
S-N -n

by the following expression.

-se(f nnH )=tr(2) - 1 n-Hn (-H n]fn( n +H()g()H (w)} dw
. f-, T nn-(1)

where tr means trace, * and T signify conjugate and transpose respectively, and

I"nIis the nxn identity matrix.

* * . ** s - .. . .n. .
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n ii
From expression (1) we observe that the mean square error ef fNH )is only

a function of the spectral density matrices of both the information and noise processes.

Thus, if we now assume that the statistical structure of the information and noise

processes is incompletely specified, we can represent this incompleteness solely by

uncertainty in the description of the spectral density matrices f n() and fN(w). We
-s -N

* will formulate our approach below. We will also drop the index n, for simplicity in

our notation.

Let the spectral density matrix f (W) of the information process belong to a
-s

class C . Let the spectral density matrix f () of the noise process belong to a class
s -N

C N . Let the members of each class be Hermitian, nonnegative definite matrices, defined

on the interval [-r,ir], containing no impulses anywhere on [-Ir,i], and being nonsingular
for all We[-7r,ff]. The no impulses and nonsingularity restrictions do not cause serious

loss in generality, and they can be relaxed if necessary. If impulses exist at a

finite number of points, they can be approximated by Gaussian functions with arbitrarily

small variances. if singularittes exist, each can be analyzed separately via lower rank

,*[ matrices. Let S be the class of linear filters whose matrix coefficients (A are the
f k

Laurent series expansion coefficients of a holomorphic matrix valued function, within

an annulus containing the unit circle in the complex plane. Then, each member*{Ak }k

in S is uniquely described by the matrix polynomial HM() = A P In the

frequency domain. Let us consider the space S of all matrices defined on (-7,i].

P Then, for A(W)eS and B(W)ES we define the metric:

d(A,B) = tr(2w)-lf [A(w)-B(w)[A*(W)-B*(w)] d( (2)

The class S of linear filters is convex and locally compact with respect to
f

. the metric in (2). We will consider classes Cs and CN that are also convex and

a locally compact with respect to the metric in (2). Consider now a game on (CsxCN)xSf,

with payoff function e(f f H); where the latter is the error expression in (1).

.............. * '. . .

.:.-,'. '.-:: . .? ? i- i>.?] , ........--. ..... . .-... .-...-.. ..-.. . . . . . .= - . _ .i;i i. ., , - o ... . .
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0 0 0 0 0 0The game has a saddle-point solution (f0  fo H where f C C f E C and H £ Sf
_s' -N - _s s- N' 9

iff:

.. ° f H 0< ,ff ) _< e(f f H) V f sXN (3)

If a saddle point solution exists, we will name H the robust filter. But the error

function e(f , f, H) in (1) is clearly linear with respect to f and f and it is

-.: -=N

convex with respect to H. Then, a saddle point solution always exists (5]. Further-

0 0 0
more, if (f, f, H ) is such a solution, then:

e(f0 , 4, H0 ) = inf sup e • f H)
Hes (f f N) W xC f

= sup inf e(f f H) (4)
(ffN)CsxC HES
-s -N s N - f

Let us define.

e (f, fN inf e(f~s fN H) (5)

HSf

Then, we have directly from [2].

e(ff) = tr(2r)lf f ( f (f) (( ) d=tr2) [f(w)+ d
-s 

-;- 

(W fN(W 
W

(6)

attained for H(W) = f (W)[f (()+fN(W)l for almost all w in [-7,W]

Thus, for the solution of the saddle-point game, it is equivalent to search for the

supremum of the expression e (f , f N) on C x C . It is easily observed thatn--N s N"

e (fs, f) is concave with respect to both f and f
rn-s -N -s -N

As in [8], we will conside) the following two classes of spectral density

matrices that are bot,. ..uve: and locally compact with respect to the metric in (2):

6-

*.,. . . . . . . .. .
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FLe =Lf(): -f(w) = (1-C)f. (W) + 6 h(w) ; WE[-7, ]

; where E given and such that : 0 < e < 1

f (w) well-known positive definite Hermitian matrix-o0

h(w) nonnegative definite Hermitian matrix satisfying the energy

constraint: (27)-I trf h(W)dW < W; for given W}

FQ -{f(w): trf f(W)dW = cl ; i l,...k, tr L f(W)dw = c

; where {Ai} measurable disjoint subsets of [-rr],

k k
U AlC[-I], c > i c,, f(W) positive definite Hermitian matrix}

Class FL g represents linear E-contamination of a nominal spectral density

" . matrix f (M). Class F includes spectral density matrices whose energy is fixed within
Q

prespecified frequency quantiles. Both classes satisfy the necessary topological

= properties, for the existence of a solution for the game in (3). In the subsequent

* sections, we will find the solutions of the game, for the following three cases:

i. C = F and C -F
s LPC N LVE

U ii. C = FL, and CN = FQ, and conversely

i. Cs 
= F and C. = F
5 Q N Q

L4 3. The Game Solution on F x F
L,E L,E

In the present section, we consider the case where C = F with
S Lenergy

constraint W , and C = F L, N with energy constraint WN. As we saw in section 2,

both the Cs and CN classes are then convex and locally compact with respect to the

metric in (2), and then the game reduces to obtaining the supremum of the expression

e (f, f) in (6), on F x F Let f (W) and f (W) be the nominal spectral
-s -NLoes LC -s-ON

densities in the classes F and F respectively. Let,
L*C5  LE. E:N
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(27- tr f (W) d- W
~os

(7)

(211) -  tr foN) d WoN

Then, the solution of the game on F x F reduces to the following optimizationE L,EN

• . problem.

Find the supremum of

em(fs,f) A q t71 [f (w)+fN (w)] dw
T

subject to the constraints:

" f (W) - (1-C s) f4 (W) > 0 (3A)

-N(W) - (I-EN) f1oN(IA) > 0

71

tr f M 3 dw <27r (1-c)W sscW l
-T os 

s

tr f ((o)dw<2 [(I-)W +s W ]< 2n W
r2 [(I-EN ) WoN + N N 2

L:W

; where if B(W) is a matrix defined on [-ww], B(w) > 0 means nonnegative definite

for all W in [-r,7r].

The expression em (fs, f in the optimization problem in (3A) involves explicitly

both the eigenfunctions and the eigenvectors of the spectral densitiy matrices f (W)

. and f (w); for all W in [-7,ir]. This induces complications in the optimization process.

Those complications can be resolved, however. In particular, we will first derive an

- 4
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upper bound on em(f, f N), that involves eigenfunctions only. Then, we will find the

supremum of this upper bound, and we will show that this supremum is attained for any

eigenvectors. To formulate our approach, we will first present a lemma, and two

corollaries. We will then apply the lemma and the corollaries to the problem in (3A).

Lemma

I Let m be a positive measure defined on a measurable space (0, F). Let AeF, and

let f, g be two real functions mapping A onto the real line R. Let f and g be also

integrable on A and such that f+g > 0, a.e. in A. Then,

-. ff dm • g dm
""fg dm <A

f+g - f fdm + g dm

with equality if and only if f = cg, a.e. in A, for some constant c.

Corollary 1

For any real numbers xi, yi ; i = l,...,n, such that xi + yi > 0; Vi, the following

inequality holds,

n n
n " E Yl

xi < i-l inn n{
xi+Yi x i"

xi

with equality iff = A; # - _.i"Yi Yj

The proof of the lemma is in the appendix. The result in corollary I follows from
n

. the lemma, the definition of a set {Al such that AiA = 0 ; VAi J, U Ai = A,
iii

n n j=1
and forf= I and g = y ; where 1 the indicator function of A
a f f A i 

•= A A .
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Corollary 2

Let A and B be two nxn Hermitian and positive definite constant matrices. Let

i X {(A); 1 < i < nI and {i (B); 1 < i < n} be the sets of their ordered eigenvalues;

that is, Xi(A) > X i(A) and Xi(B) > Xi+l(B), for all i. Then, the following

inequality holds,

" "" -i n n-

wihtr (A+ -lBI~ ~ +[ (~l

with equality if and only if A = cB, for some scalar constant c.

The proof of corollary 2 is in the appendix, and it evolves from the leIma.

We will now apply the lemma and the two corollaries to the optimization problem

O- -. (3A). Let us consider the nxn spectral density matrices f (w) and fN (W). Since both

- the nominal spectral density matrices f (W) and f O() in (3A) have been assumed

positive definite; for all W in [-wr], and due to the nonnegative definite constraints

in (3A), the spectral density matrices f (w) and f () are positive definite for all W-s

in [-71,7f]. They are also Hermitian. Let us temporarily fix W, and let us denote by

{A. ( ) 1 < i < n) and {A M M; 1 < i < n} the sets of ordered eigenfunctions for

the matrices f (w) and f (w) respectively; where A () > X (M) and X M > X vi
-'s -N is - i+lVs IN - i+l,N

and V we[-,7]. Then, the matrices f-l() and fl() are also Hermitian and positive definite,

and their respective sets of ordered eignefunctions are {X (M); 1 < i < n} and

. { (); < i < n} ; with X-  () > X () and ( > (), for all i and all W. if
iN - i+ls is i+-,N - iN

we now apply corollary 2 to the spectral density matrices f (w) and f (W), for some
-5 -N

.7 fixed w, we obtain:

.L"tr i) + ) _ +[ Ai(,,j - (8)

-- 1 -lM M) [Y A1 (c)] +-lO

with equality iff f (w) = c(w) fN(W), for some scalar c(w).

K:.&1: .- ".. . . . . . . .
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Directly from the expression e(f, f) in (6) and from (8), we now obtain:

-1

em( <(27r) )- + (W' -) dw
1=1

' eb (f, f_ (9) :-

S. ; where if f (w) = c(w) fN(w) ; V wC[-rT], for some scalar function c(W)
-s"

defined on [-7,i], then equality holds above.

.. We will now transform the optimization problem (3A) into another optimization

problem, that involves eigenfunctions only. To do that, we will substitute the objec-

tive function e (f, f_) in (3A), by its upper bound eb(f , f_) in (9). We will also

• substitute the constraints in (3A) by constraints that involve eigenfunctions only.

We will show that the solution of the transformed problem is a sufficient solution for

the problem (3A).

Let f () and f (w) be the nominal, positive definite spectral density matrices

in the classes F and F respectively. Let XOs (W)); 1 < i < n} be the set of
LPCS LOEN is

ordered eigenfunctions of the matrix f (W) on [-r,Tr]. Let {X'N (W); I < i < nI be the
-os 0N

0 0ordered eigenfunctions of fN(W) on [-rrTr]; where i s >X (i+,w) V i, V w-w],

and () > A N(W); V i, V c[-r]. Let f (W) be a spectral density matrix that
.belongs to class F and let {X is(); I < i < n} be the set of ordered eigenfunctions

belongss tocass

of the matrix f (w); where A is() > i+l(w); V wc[-w,r1; V i. Then, the matrix

f () - (1-C s)f os(w) is nonnegative definite for all W in [-7r,yT], which induces the

necessary condition X (W) > (1-Cs) X0 (W); V we[-7T,rl], V i. A necessary and sufficientis s i

condition that the matrix f (W) must satisfy, so that the matrix f (W) - (1-C ) f (W)- -S S --0S

is nonnegative definite V WE[-7,T r], will involve both the eigenfunctions and the eigen-

vectors of the matrix f (W). A sufficient condition for the satisfaction of the latter
-s

is given by the inequality A () > (1-Cs) 0 (W); V W([-,r]. Similarly, if f (w) is
ns - is -N

a positive definite matrix, and {Ai(w) ; 1 < i < n} is.the set of its ordered eigen-
iN
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functions, it is sufficient that An(W) > (I-sN) XlN(w) V we[-.71,] for the matrix

sufficient nditos> (1- (); V ie[-sr,7] and X (W) > (- N

V we[-7,r], we can now define two classes F and F that are contained respectively

in F and F,. Those two new classes are defined as follows.

LVES L,EN*

00

m SPS If s {(W) A kns(W) > (I-Es) Ais (W); V We[-1r,n] and

" tr I"f (w) dw X is(W) dw < W 1  (3B)

7rT i=l

; where {Xis () ; I < i < n) the set of ordered eigenfunctions of the
nominal spectral density matrix f (w) in F , s(w) a positive

-as Les5
definite matrix V we[-1,71] and {X is () ; 1 < i < n) the set of its

ordered eigenfunctions}.

F {f (W) :A_(W) > (1- N) VW e[-,7T] and
NEN -N - _ N

tr f N (w) dw XiN(W) dw < W 2  (3C)
7rT i=1

where {A0N(W); 1 < i < n} the set of ordered eigenfunctions of the

nominal spectral density matrix f (w) in F f (W) a positive
-ON LE:N --

definite matrix V WE[-7T.r], and { (w) ; < i < n) the set of its

ordered eigenfunctions}.

The positive constants W and W in the classes F' and F, respectively, are the

energy constraints in the optimization problem in (3A). The classes F' and F'sE s  NE N

*. are as class F in [8], and they are clearly convex and locally compact with respect

. to the metric in (2). The classes F' and F, are nonempty if respectively
s, E NIEN



. ,- . . r'-. n°,--' ' . -' '.r " . =' J:- .- '- -
- ' -

.
'  

.-- ~ -r-.7
c

- --~ - . . "'.- -'' "

...

12

I I
0

f 0~,-1 d -1S) s( wJ) d w < W 1 U 1 -1 and IN ( ) d wJ < W 2  n j

Let us state the following optimization problem on F' x F'•. S, Es  N, N

s~ N

Find the supremum of

." n -I n

Subject to the constraints:

ns(w) (1-e si(w) ; V we[-,r] (3D)

0

nN(w) > (i-CN) XIN(w) ; v we[-TWr

A f ?(w) dw < W

"dw -. 2

f W ~ iN (w) dw< W 2

7r£2

We can now express the main theorem for this section. Its proof is in the

appendix. I
Theorem A

Let the classes F and FL,N of spectral density matrices be such that:
LSN

iT

f (w): () dw < W n -1

"." (0) -t-Os

f (w): (w) dw < W n (1-e -

-N

• or
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Then, there exists a sufficient solution {X (w) ; 1 < i < n} and { € e ; 1 < i < n

is iN
of the optimization problem (3D). This solution also provides a sufficient solutionJ e e fo(fe w),f (w)) for the optimization problem (3A); where the eigenvectors of the matrices

e e(w) and f (w) are arbitrary, and it is such that:

1. If

)10  -1 <
!nax(W n(1-E Y (Wi) W (11)) W) wJsN s is -

Then,

e (W) e(W

Xe (W) = Ae(W) ; V i (A.1)

- where

e -X' (W) w2  ; W W [-TT(= wN v [-irr1

s 1T

T-l,- .A ( d = n W1

2. If

J m ¢wnl-)X 0  -l o
s f max(W".n(1JssN= s(w), W2 n(I- N)XIN(w)) dw > 1 (12)

Then,

e X(() = eW)

X N(W) =X() ; V i

where

X0 W

"1(1-C) A 0 (W) ; WE A {:p >(1-% )( )-l s (
N (W) ) NN N
e lN(W
XX (W)

X lN(W)
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"e is is

N ... t(l-N) XlN() ;WE {w:v < (1-e )(l-s )-I s(w) ,s sV N s 0M
e is

O )

m p :j (-) XNN(w) dw: + (l-s) ( d 0X M

E-s

V(l-E) X s(w) dw + (I-C) A0 (W) d= n-  W
is INE N is I U

and the constants Vi and V are both positive and unique.

The robust linear filter is then given by: H e(w) = Xe(w) [A (w) + 1(U)]-i I;C[-7, Wj-" - N

where I the identity matrix.

We observe from theorem A, that if condition (ii) holds, then any information

- process with identical spectral ordered eigenfunctions Xe (w), and any noise process
• " S

e -I W2ae() [W
with identical spectral ordered eigenfunctions A() = W W X (W)

N 1 2 s

provide a sufficient solution. If, on the other hand, condition (12) holds instead,

• > then the sufficient solution is strictly determined by the maximum eigenfunctions

X1 (0 ) and XN (M) of the nominal information and noise processes. Since the conditions

(11) and (12) are both determined by the interrelationship between the eigenfunctions

A0 (M) and A0 (w), it is clear that in all cases the sufficient solution depends on
is IN

the latter. Solution (A.2) is graphically exhibited in figure 1. We point that the

solutions in theorem A are not unique. They are sufficient, however. That is, any

other solution can not be superior, performancewise.
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4. The Game Solution on F x FQ

In the present section, we consider the case where C = FL ; with energy

i U constraint W., and CN - F. The case Cs = FQ and CN = F is symmetric to the

former; thus it will not be covered explicitly. As in section 3, and due to the fact

that both the present classes C and C are convex and locally compact with respectS N

Uto the metric in (2), the game reduces again to obtaining the supremum of the expression

em(fs, f) in (6) on FLes x FQ. Let us denote W1 as in (3A), and let {A is (w),

• {X iN(w), be the ordered eigenfunctions for the information and noise processes, as

- in section 3. Let, as in section 3, {X'°(M)} be the set of ordered eigenfunctions of
:i s

the nominal spectral density matrix f (w) in FL . The original optimization problem
-os L,;5

here consists of finding the supremum:

sup e(, f ) (13)

" f e FLls and f c F-s L- 5 -N Q

; where the constraints induced by the class F do not impose any restrictions
on the eigenvectors.

Parallel to the optimization problem (3D) in section 3, let us state the following

- optimization problem on F' x F that involves ordered eigenfunctions only; where
sols Q

F' as in section 3.

Find the supremum of

-1
.1-, 7r n -1 n -1

Ai 1
eb(f ' fN _ (21T)- X+W dwo

b 2 -s" -:--[E i [:i(

subject to the constraints:

X (W) > (I-E) X0 (W) ; V w14-7, TO (4A)
ns is

n_

f i W)d <W



16

n

-. X."-d = C ; J O ,. ..,k,iN

fj

A k A k
; where A 0  [ _ , ] U , A -r C - c

j=l j=l

As with theorem A in section 3, we can now express the following main theorem

for this section. Its solution is in the appendix.

Theorem B

Let the class F of spectral density matrices be such that:

7T

f(W) : ) (W) dw < W n1 (l-C )l (14)

Then, there exists a sufficient solution {X s(W) ; I < i < n} and {Xe (W) ; < i< n

- of the optimization problem (4A). This solution also provides a sufficient solution

(W), fN(w)) for the optimization problem in (13); where the eigenvectors of the

-.-. e e
matrices fe(W) and f (w) are arbitrary, and it is such that:

A% e eW* m x (w) = Ae() ; v i
is "

XiN( ) X;(w) ; vi

k

e J E A - W
whr A~ (W)l=

J=O x

X W)1 - 0 M- (W

• _. - - - - .k

T O, -,J i (B.1)

x0 -f x (i-cs) A s(w) dw ;J= 0,...,k

.7A1
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jIe if lic'. > x
,j

(l- ) (WC) dw if lie < x0

PSt i+ jj nj --1 ,,-1

.* ii ic,+jx'= W *j*

j:IUcT>X. j:Jct.~
i-iJ

and the constant 11 is positive and unique.

The robust linear filter is then given by:H e M) X e (W) Xe C) + >e~ 1-1

where I the identity matrix.

In theorem B above, 1A (u) denotes the indicator function of the set A . From

"weobserve that the sufi t s i(W)

(B.)sufficient solution is such that the ratio is piece-

wise constant. This is exhibited graphically in figure 1. As in theorem A, the9,-

0
solution in thorem B is controlled by the maximum eigenfunction A (W) of the nominal

is

* information process. The solution is also controlled here by the quantiles and the

quantiled energy of the noise process.

5. The Game Solution on F x FQ

U*. In this section, we will consider the case where the convex and locally compact

classes of information and noise processes are both FQ, with different quantile and

energy characteristics. Specifically,denoting Cs " FQ and CN = FQ , we define.
s NN

FQ ={f(W) tr f (W) dw=ci; i= 1...,k (5

si k

; where {As} measurable disjoint subsets of [-T,JT], U Ai = [-7T7],

f s() positive definite Hermitian matrix}

-s ...,. ..., , ._ .., • , , ...., .., .., , j , , .., ..., , , -.-, .. ,. ..+ ,
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FQN f() : tr ffN(w) do cNi , i1,...,m
~N(16) :

; where {ANi} measurable disjoint subsets of [-nr], U A = [-w),

fN(W) positive definite Hermitian matrix} i=i
-N:

U The game here reduces again to obtaining the supremum of expression e (f , f) in
m -s -N

(6) on F x F QN. As in sections 3 and 4, we state the following optimization problem,

that involves ordered eigenfunctions only.

Find the supremum of

-1

A -eb(f, f) = (2) - f (M -] + [] dwb sm -:- " is=[ iN:

- subject to the constraints:

n

m fis ( ) dw c= j  l

fA i1l
sj (5A)

n

X iN(W)d Nj ; j l,...,m

Nj

where the sets {A 1, {A I are given by the classes F and F respectively.
Nj} sj QN Q

We now proceed with the main theorem in this section. Its proof is in the

appendix.

-'- Theorem C

..." Let p(-) denote the Lebesque measure in [-IT,7]. Then, a sufficient solution

{X es(W)}, {XeN(W)} of the optimization problem (5A) is given by the following

expressions.

L 4:
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is s

Xe( e ~w ~ (C. 1)

iNN.

e e1 1 eW ~wee X Mw A nW dw L~ dn] (wc an (ritayotewsN . ~ U_" N A.

sj N

dw N M~ -1cs) [ElANA~t )

and then, (C .2)

e k in c jC Ni .1 As N

Xs (w -m

V(A N) E cN? 1i(A1t. A.) 11- (A Nf)

;where 1A(W denotes the indicator function of the set A.

A sufficient solution for the original optimization problem is given by the

ordered eigenfunctions as in (C.1) or (C.2), and arbitrary eigenvectors. The robust

* linear filter is then given by:

-1
HeW)= e( [e( +XeW) 7rw], where I the identity matrix.

From theorem C we observe that one of the eigenfunction sets (information or

noise process) may be selected arbitrarily, but satisfying the corresponding quantiled

energy constraints. Then, the remaining eigenfunction set is determined uniquely. A

* particular such selection is given by (C.2). Then, X e(M isa piecewise constant

N
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. .: function on the 1A quantiles, and Xe(w) is a piecewise constant function on the
Ni s

{A (A N I quantiles. Solution (C.2) is exhibited graphically in figure 1. In the

special case that k f m and Asj = A ; V j, the solution (C.l) gives X ( ) =

k s11jW Nj
.- C cj 1 ()" Ae(w), while the solution (C.2) corresponds to Xe( ) and Xe( )

sj NJ A. N s N

that are both piecewise constant functions on the {As} {A Nj quantiles, at

* different levels.

6. Performance Evaluation - Examples

In this section, we will discuss the performance induced by the robust linear

* i filters in sections 3, 4, and 5. We will also present quantitative results for some

examples.

The solutions in theorems A, B, and C provide the "worst" pair (f (), feNW) of

information and noise spectral density matrices (in terms of performance) within the

e e•,;
corresponding C and C classes, and they are all such that A (X ) = Ae(w). V i,!"s N is s

•e.,
A (e ) = A() ; V i. Therefore, if I is the identity matrix, the spectral densityU iN N e e

matrices f e(W) and f e(W) are given by the following expressions.s -N

f e(w) = e(w)' ; w [-7r,r]
-s

5 (17)

fe(w) =Ae(w) -I ;tic[-T,7r
N N

* If e(f f H) denotes the error induced by the spectral density matrices f , f
-s -N' -- s-N

and the linear filter H, and if H e denotes the robust linear filter on C x C then

in all three cases represented by theorems A, B, and C, we have:

H e(w) X e(w) [Xe(w) + Xew] -l-rr (18)

e e e e
e( f-N' E  <  e(f- fN H  ;(f f--N E Cs x CN (19)

e(fe f e H e (2Tr) n J e(.)-XN(w) [X(w) + )N()] dw (20)
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-" ; where I is the identity matrix, expression (20) is obtained by substituting

expressions (17) in (6), and in (20) the dimensionality of the multivariable processes

U has been assumed equal to n. If we substitute expression (18) in expression (1), we

e eobtain the mismatch error e(f , f , H ) induced by the robust lienar filter H and

some pair (f s f ) of spectral density matrices in C x C . The mismatch error is

then given by the following expression.

e -1 I [eT+L~) -{[ew ]22~sW+X
e(f 31 f )R (27) N es~~f~{x~w]xW+x~) X Mi) dw

J-1  i i

(f,. EC xCN (21)

• -" " where {IX M)} and f,( )} the ordered eigenfunctions of f (C) and f (w)
is iN -s -

respectively.

* Let f and fON be two nominal spectral density matrices in classes C and CN--os So

" respectively. Let He be the robust linear filter. Then, for all the classes in

sections 3, 4, and 5, the mismatch error e(f os, fN He) is given by expression (21),

if the spectral density matrices f and f are substituted respectively by f and
-s -N --Os

f ON' Due to expression (6), the optimal error e(fos f O) at (f , f O) is given by

the following expression.

e(f f ) = 2) I tr [ () + f )] dw (22)
-Os' -ON Cow) tr f+ N ci( 2

" Given the classes C and CN, given nominal spectral density matrices f ands N9-os

o in C and C respectively, given the robust linear filter He in C x CN, we-ON s N ' -Ns

e
will define two performance measures for the filter He. The efficiency

E(H f f C C) of the filter H at some pair (f ,fN) in C x C is defined as
-s-N's N - -N s N

the ratio of the optimal error e(f s f N) in (22), over the mismatch error e(f f N' He)

.'.. in (21). That is,

L4

• .. - 2 .2 .i' i ,,i ,, '. - ", ." ,: . * * . -,, , . .. , - - :- ,



e22

E (H, ,f e (f fN) "e f fN H) (23)

-- s f-'s' CN -s -
FHe the efficiency of He in C x C , clearly attains its highestUFor given filter , -- s_

e evalue, one, at (f, f ). If nominal spectral density matrices f and f are given,
S--os -ON

T an interesting measure is the efficiency of the filter H e at (fos 4-N ) "

e

Given the robust filter H let us define,

e(C, C inf e(f H (24)
N' H)- (f ,fj)c xC

-s-N s N

;where for any of the classes C, CN in sections 3, 4, and 5, the error

e(fs -fN' H-) is given by (21).

eThen, we define a second performance measure for the robust filter H in

e e
sections 3, 4, and 5. The performance variation P(He, C s CN) of the filter H in

C x C is defined as the ratio -)f the error e(C C He) in (24) over the error
s N s' N'-1e
e fe e -

es Nf' H) in (20). That is,

e Ae -1 e e e
PC, C CN)_e(C C H) e- (f f H) (25)

' N s N' ' N'---

* The performance variation clearly does not exceed one (due to (19)),and it measures

ethe maximum error variation induced by the robust linear filter H in C x CN.
_ NS

The infimum represented by the error e(Cs, CN, He) in (24) exists for compact

classes C and CN, and it can be computed explicitly for the cases studied ins

" sections 3, 4, and 5. We state this result in a theorem, whose proof is in the

. appendix.

°.4
Theorem 1

The error e(Cs , CN, H ) in (24) is given respectively by the following expressions.

a. C xC -F xF in Section 3
s L,e5  'VN

If condition (11) in theorem A is satisfied, then,

. . . . . .."
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e e-1-e(C , C H)=e(f ,f H) (2r) 1 W W (W W

-V(f -fN F L,Cs x FL,EN (26)

If condition (12) in theorem A is satisfied, then,

e (C C 1 e)W w+ CW
' N' s 2 s N 2 N

- + (2r) N x+ ( 0s(w) d

2

N~ r e ()(2)-1 (1-6N) s x0 (W) dw (27)

- where W, WN the energy constraints in classes FL, and F respectively, andS N FE s L,SN
p , e:(,), Xe(W) as in solution (A.2) in theorem A.N S

b. C x CN =F F in Section 4s N L,CE5  Q

U.
k ,l 2 n

e(Cs C e) = (27) (1 s) X is fM dw
j=o j i s1

(2) - 1  c 2

(C' c+x)j =0c+x

+ 1+ n.max(xj c W (28)

where W the energy constraint in class F L,E,{c'} the energy levels in class FQ,times na L,'8's

0
and {x I , {x, P, as in theorem B.

. .

.
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c. C x C =F x F in Section 5
s N -Q p

e(CC H)=e 2rT)
s N' [1 ~i sj

c~t 1j(A~qj Aj)p (At) -

m 0 [1 MIk~ .I1k)
+(n)-1~C i m + C.

i=1i:sAj # Z=iJ

(29)

;where all the quantities in expression (29) are as in theorem C.

In theorem 1 above, it has been assumed that in cases a. and b., the energy

*levels W. and W Nare fixed.

* From expressions (A.32), (A.38), and (A.42) in the appendix,the solutions (A.2),

(B.1), and (C.2) in theorems A, B, and C respectively, and by direct substitution in

p expression (20), we also find,

1. Case in theorem A. Condition (12) satisfied

fE
+ (1-e )v[1+v]- A (w)dw +l%(1~N ---w)~ dwf is J(1-)X0  (wi)+(l-s- A 0 (Wi)

fV fEmEc sis N iN
V ).i

(30)

;where all the quantities in (30) are as in theorem A.
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2. Case in theorem B.

k

e(fe ,f= e27r) -1n x . + xi -l (31)

j=0

; where all the quantities in (31) are as in theorem B.I.
V. 3. Case in theorem C. Solution (C.2)

= j=l =l

(32)

; where all the quantities in (32) are as in theorem C.

Finally, for the robust filter He in sections 3 and 4, we can evaluate respectively
['" e

a breakdown curve and a breakdown point. The breakdown curve for the robust filter H

in section 3 is the set of points (Cs, * N) such that, if either one of the %s * N

values increases, then the error induced by He at any pair (f ) in FL, x FL

can take arbitrarily large values. The pairs (E s CN) for which that occurs are5
those that satisfy condition (11). Indeed, expression (26) is then satisfied, and

the error e(Cs C He) increases then monotonically with the signal-to-noise ratio

ee
W W2. The breakdown point for the robust filter H in section 4 is this value e s

above which the error induced by He at any pair (f f ) in F x F can be
sa "N LVE 5  Q

arbitrarily large. The values C for which that occurs are such that x = pc ; VJ
S

*" in the solution of theorem B. Indeed, by substitution in (21), we easily find that

then the error e(Cs CN He) is as in (26). The condition x1 = I c1 ; V j provides,
9N*

in general, a lower and an upper bound on e The upper bound c * is the breakdown
S

point. The lower bound c sL in conjuction with the lower bound E' provided by

condition (14), determine acceptable e regions, for which the solution in theorem B

h s DS

-. - holds. Directly from (14) and (3A), we obtain:- s
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I' w -1 -1

1s 2s W n 0 (2 no 2 7r W ( 3 3 )
sL S A 1-7rU(JI

From the condition x = 11 c • V J, and from the quantities in (B.l), we obtain'. j

after some simple computations,

!0

C min([2nW - ~ n X (W) dw] [2 Trw W ) ( e cf n Xo(W dw]mEJ12 0 - A 

(34)

; where

k -A

" = M < s o (3)

m (( nO (W)dw-2TrW nX s(w)dw-2Tr(W -Wa sL s sL s

• (36)

2'. fZ n Xls(w ) dw > 2 T Wos C (37)

The acceptable c a region for the case in theorem B is then [max(C sL,' s; L
) , * ] .

If class S in (35) is empty, then C 0. If class S in (37) is empty, then
1L 2

* e

The breakdown curve induced by the robust linear filter He in section 3 is of

particular interest, and it will be studied here analytically. As we will see, this

curve behaves as the capacity region in information theoretic, two-user multiplexing.

I--
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Let, as in theorem A, n be the dimensionality of the vector information and noise

processes, let X°I (w) and XIN () be the maximum nominal eigenfunctions for the

information and noise processes respectively, let W and WoN be the energies of
os o

the nominal information and noise processes, and let W and WN signify the energies

of the contaminating information and noise processes respectively. Let us define,

- D) [ nX N) [ dW]1j ; X,,w[-d, ] -
7r 7T

o X0 °  2m a

DA n X M dj n Xis)d

'-'i I N -7r I

' '' N A  2 1 2 [L 0 Asm)d •axmn0gm,(2 ) 2 D

A (27)2 n A (w) dw max (min g(w), (2w) - D)
[ is

A -(2n2 n X0 dwl-max (min g1W) (2Tr)- 2 D-1 (38)

BN 1 l + 27 WN [AN- 27 WoN]-i

B 1 + 2w [A -2 W.' s s os

We can now state the following theorem, whose proof is in the appendix.

Theorem 2

Let the function g(N) X 0 M [A (M)J be continuous everywhere in [-ww].Is iN
Wherever differentiable, let the derivative of g(w) be zero or infinity only on an W

set of measure zero. Then, the breakdown curve for the classes in theorem A is

L. strictly concave, the acceptable (s , E ) region lies within the subplane [Bs, lIX[B i];s N N'
where the numbers B9, BN are given by (38), and the derivatives -- . l IN=l
are both zero.

L
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The breakdown curve, and the acceptable region are exhibited in figure 2. If

the function g(W) in theorem 2 has zero and/or infinity derivatives on nonzero measure

w sets, then the breakdown curve will still be monotone, but it will not be strictly

concave. We observe that the quantities A - 2T W and A - 27 W in (38) are
N oN s os

both nonnegative, and they are strictly controlled by the nominal information and

noise processes. If both those quantities are strictly positive, the lower limits

BN and B in the acceptable region decrease monotonically as the contaminatingN si
energies WN and W respectively increase. The limits B N and B become zero for any

WN, W values, if respectively AN - 27r W = 0 and A - 27r W = 0. This, for example,
s soNS Os r n-

occurs if (27) max g(w) , D > (27) min g(w), and n_ n d dX= -  (w)d'

nX~ 0 Md .(); where g(W) and D are given by expressions

(38). The above conditions reflect the case where the nominal ordered eigenfunctions

(for both the information and noise processes) are equal to each other. We finally

note that the lower boundaries B and B N in the acceptable region of figure 2 are

results of the conditions (10) in theorem A. Those conditions were imposed so that

the robust solution is independent of spectral eigenvectors.

We will complete this section by presenting and quantitatively analyzing some

examples. We will present examples for the two, more interesting, cases in sections

3, and 4. We will base our quantitative analysis on the performance measures introduced

in this section.

a.- Example for Case in Section 3

Let the nominal information and noise vector processes have dimensionality two.

We select,

" ,

.............................................
o" | .. X r . ~ . t .
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- L'. (W) 0

(39)

;.(W ) 0

I oN 
0;N

w where

-() a 2 [1 + 2 2

is -

X o 2 21

2 N() N[1 + 2 a cos +

-(W -1 [I WaC W

We also select W Wo =1 andWN WON = i. Increased W W and WN WN values will

give uniformly inferior performance for any pair (C., EN) " Decreased such values will

iL. give uniformly superior performance, instead. In expressions (40), we select,

a 2 5 x 10
- 2

-- (41)
a2 10-2

N

-' We also select,

= 2 = .98

(42)

Si = 82 = -.93

The above example corresponds to the case of equal eigenfunctions for both the

tv
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noise and information nominal spectral density matrices. Thus, the acceptable region

of figure 2 is here such that B = B = 0. Computed points of the breakdown curves N

are given by table 1 below.

e £s .05 .1 .16 .25 .34 .46 .58 .70 .79 .85 .91 .97

e:N .95 .88 .79 .70 .61 .49 .37 .25 .16 .10 .07 .01

Table I

Breakdown Curve for Example (39)-(42)

*-i For the example stated by expressions (39)-(42), we computed for various (Es' N )
stN

e" values, the efficiency E(He , f , C, CN) at the nominal pair (fo, f ), the
-O-N os - -ONpeformance variation P(H e ,_ C, C ) , and the error e(fe, fe, H e ). We also computed the

error variation induced by the optimal filter __H at (f os, fN ), within the class Cs x CN -

We denote this error variation P(H° , C , CN), and we define it as the ratio ofs N

m-n e(fs f N' I ) over max e(f s- f N, H ° ). We exhibit our results
(f'f )CCsXC (f,f)CCsxC ---s -N s N -s -N s N

in tables 2, 3, 4, and 5 respectively. In table 6, we exhibit values for the quantity

max e(ff_ H e(H).
1 (f,f)cc XC

-s -N s N

.002 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95

*02 .986 .985 .981 .972 .959 .941 .893 .832 1.761 .677 .578 .457 .381 .292 .187-

.174 .173 .169 .163 .158 .152 .141 .131 .120 .110 .101 .091 .087 .083 .083

I.: .109 .109 .107 .106 .104 .102 .098 1.094 .091 .087 .083 .083 .083 .083 .083
.07 -.096-096--09--.--3-.-92----9 .086_.083 083 - - .083 - -0-

7 8 .097 .096 .096 .090 .08 .087 .083 1.083 .083 .083 .083 .083 .083 .083 .083

8 .09 .09 .089 .087 .085 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083

.9 --. 089 .088 .087 .083 .083 j.083 .083 .083 1.083 .083 1.083 .083 .08 1 .08 .083J

Table 2

"L E(He' f-os -oN' C, CN) for Example (39)-(42)
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.02 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95

I 002 .733 .680 .503 .378 .302 .252 .190 .156 .135 .124 .123 .139 .164 .219 .375

.1 .682 .681 .675 .671 .670 .672 .684 .706 .738 .782 .840 .914 .958 1.00 1.00
... 3 .852 .852 52 .856 .860 .876 .897 .926 .962 1.00 1.00 1.00 1.00 1.00

5 903 .903 .903 .906 .912 .919 .940 .968 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.7 .927 .928 .930 .937 .948 .963 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

--".8 .935 .936 .941 .955 .977 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.942 1.943 .9601.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 11.00 1.00t1.00

Table 3

P(HeC C N) for Example (39)-(42)

.002 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95
002 .101 .109 .145 .189 .233 .277 .365 .449 .32 :613 :692 :768 .803 .837 :866

., 617 .621 .641 .666 .689 .712 .753 .789 .821 .846 .865 .877 .879 .880 .880

..,3 .789 .791 .801 .813 .824 .834 .850 .864 .873 .879 .880 .880 .880 .880 .880

1.5 .839 .840 .846 .854 .860 .866 .874 .879 .880 .880 .880 .880 .880 .880 .880

.7 .862 .863 .868 .873 .876 .879 .880 .880 .880 .880 .880 .880 .880 .880 .880

!,8 .870 .871 .875 .878 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880 .880

f.9 .876 1.877 879 .880 .880 .880 .880 .880 !.880 .880 .880 1.880 .880 .880 .880

- Table 4

-. e e e
e (f, N H) for Example (39)-(42)

K2
I.
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.002 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95

j 1002 .797 .764 .633 .525 .451 .398 .325 .278 .245 .221 .202 .188 .181 .176 .170

., .077 .077 .077 .077 .076 .076 .075 .074 .074 .073 .072 .072 .072 .071 .071

3 .028 .028 .028 .028 .029 .029 .030 .030 .031 .031 .032 .032 .032 .033 .033

5 .017 .017 .017 .018 .018 .018 .019 .019 .020 .020 .020 .021 .021 .021 .022

J.7 .013 013 .013 .013 .013 .013 .014 .014 .015 .015 .015 .016 .016 .016 .016

8 .01 .011 .011 .011 .012 .012 .012 .013 .013 .013 .014 .014 .014 .014 .014

- .. 010 .010 .010 .010 .010 .011 .011 .011 .012 .012 .01.01013 .013 1.013 .013

Table 5

P(H, Cs, C ) for Example (39)-(42)

- N

U"

I

|. --
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We note that large PHe, C a C , C N) values correspond to small

error deviations within Cs x C as induced by the filters He and H 0 respectively.

s N'
SFrom tables 3 and 4, we observe that, for large values of the pair (Es' E:N)' the error

deviation within C x C is small, but it deviates around absolutely large values of
s N

e e ethe maximum error e(fs, fN H ). From table 2 and 4, we observe that the efficiency

e e e* at the nominal Pair (fos f fm) and the maximum error e Uf, f N, H ) both degradate

gracefully as the values of the pair (es, CN ) increase. The values .083, 1,00, and

.880 in tables 2, 3, and 4 respectively correspond to values (s , E: N) that are beyond

the acceptable region; that is, beyond the breakdown curve. Comparing tables 3 and

4, with tables 5 and 6, we observe the truly dramatic effect of the robust filter He.

Indeed, from tables 5 and 6 we see clearly that if the presence of the contamination

is ignored, and the optimal at the nominals filter is adopted, then the error fluctua-

tion as well as the maximum error in Cs x CN are dramatically large, as compared to

those induced by the robust filter. This is so, even for small contamination para-

i meters c and E N. Thus, the results of the comparison between tables 3 and 4, and5

5 and 6 speak for themselves, and those results are the true advocates in favor of

the robust approach.

In figure 3, we have plotted the efficiency E(He, f o f C s CN ), the maximum

error e(fe, --N'e, H e ), and the performance variation P(He , Cs , C ), for the example (39)-
s -N_ N

(42), as functions of EN, for E = .1 and c = .7. We notice that for both e - .1
s S S

and e = .7, the performance variation induced by the robust filter maintains uniformly
5

high values, but so does the maximum induced error e(f e, f e H e). Thus the error

induced by He fluctuates relatively a little within C x CN, but it does so around

relatively large error values. At Fs = .1, the maximum error e(fe , f-N He is more

than 25 percent less of the same error at E = .7, for E N values not exceeding .01.
e

The maximum gain in performance variation P(He, C , C N ), as one moves from E f .1

to E s .7 is about 33 percent, realized at about eN = .18. The gain in efficiency

5
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- .

E e f fN C CN) as one moves from e = .7 to s = .1, reduces monotonically
-os oN ' N 'ss

as CN increases. The maximum such gain exceeds 8 percent. We note that the N regions
N

in figure 3, within which the curves (2), (3), and (4) converge to the respective values

.083, 1.00, and .880, signify points beyond the breakdo. curve. In figure 3, we have

also plotted the performance variation P(H0, C, CN), for E = .1. We observe how

dramatically smaller than P(He, C C N) this variation is. This fact, in conjuction

0
with the off-scale values of the maximum error e(H ) exhibits nicely the superiority of

e 0the robust filter H , as compared to the optimal at (f osf ) filter H At e s  .7,

this superiority is far more striking, and it is deleted from figure 3.

We point out that if, in our example, we select the nominal eigenfunctions in

(40) such that )XO (W) # O (W) and o (W) # A (M), the performance induced but the
is 2s lN 2N

robust filter He will deteriorate uniformly. This deterioration will be increasing,

9 as the distance between the corresponding eigenfunctions increases.

b. Example for Case in Section 4

Let the vector information and noise processes have dimensionality two. We

* select, as with the example for section 3,

0 ) 0

0~ M0 w 0 1 2"2- is

XA (bi) X0 M= 2 [1+2 a cos w~ + a 2
is 2s

2 12 43)
2 = x 0

a = .98

W =Ws 0s
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Then, E'L in (33) is equal to zero, and the class S1 in (35) is empty. Thus,

max (EsL, EsL) - 0.

Let us select a nominal spectral density foN(W) in the class FQ. We need this,

to evaluate performance measures P(H , Cs CN) and e(H0 ) as with the example for the

case in section 3. Let foN(W) be such that,

|0
XiN(W) 0

f (W)=

o o 2 -NoN 2N XN~XiN(wo) ff A2N(to) = NI+2Bcst 2]144

2 = 10-2-. ON

8 = -.93

U1
We select the quantiles {A 0 < j < k} in F such that, A [jrr(k+l)-.

(j+l)r(k+l)-). The energy level cj in A is then equal to f 2XN(w) d,
fAj

U0.: where XIN (w) is given by (44). We select k+l values equal to 2, 4, 10, 20, and 30.

* As in the example for the case in section 3, we compute for various s values the

quantities E(He f s fON , Cs, CN ), P(He , Cs, CN ), e(fs, fe, He), P(H, C s, C N ), and

- e_(H_). Our results are exH~bited respectively in tables 7, 8, 9, 10, and 11; where

for all cases the class S in (37) is empty, thus C* = 1.
2 s

L?
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.002 .01 .02 .1 .2 .3 .4 .5 .6 .7 .8 .9

2 .643 .568 .453 .173 .124 .109 .101 .096 .093 .091 .090 .088

4 .895 .733 .528 .173 .125 .109 .101 .097 .094 .092 .090 .089

10 .970 .759 .537 .174 .125 .109 .101 .097 .094 .092 .090 .089

20 .977 .766 .533 .174 .125 .109 .101 .097 .094 .092 .090 .089

130 .981 .778 .550 .178 .126 .110 .102 .097 .094 .092 .090 .089

Table 7
E(HC C) for Example (43)-(44)

f 
CS 

N S

k+l S .002 .01 .02 .1 .2 .3 .4 .5 .6 .7 .8 .9

2 .818 .565 .515 .686 .799 .853 .884 .904 .919 .929 .938 .946

4 .743 .480 .459 .685 .798 .852 .883 .903 .917 .928 .936 .943
10 .719 .468 .454 .683 .798 .852 .883 .903 .917 .927 .936 .942

20 .719 .464 .454 .638 .798 .852 .883 .903 .917 .927 .935 .942

30 .724 .467 .452 .676 .793 .848 .879 .900 .914 .925 .933 .940

* Table 8

P(H e , C s, C ) for Example (43)-(44)

.002 .01 .02 .1 .2 .3 .4 .5 .6 .7 .8 .9

2 .139 .227 .313 .618 .737 .790 .821 .840 .854 .864 .871 .877'

4 .110 .208 .301 .617 .736 .789 .819 .838 .852 .862 .870 .876

10 .105 .206 .299 .616 .735 .789 .819 .838 .852 .862 .870 .876

J20 .104 .205 .299 .616 .735 .789 .819 .838 .852 .862 .870 .876

,30 .103 .201 .294 .609 .730 .784 .815 .835 .849 .860 .868 .874

Table 9

e e ee(f f ) for Example (43)-(44)
-N
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.002 .01 .02 .1 .2 .3 .4 .5 .6 .7 .8 .9

2 .075 .072 .069 .049 .035 .026 .020 .016 .012 .010 .008 .006

4 .227 .208 .188 .104 .064 .044 .033 .025 .019 .015 .012 .010

10 .670 .543 .438 .167 .090 .059 .042 .032 .025 .020 .016 .013

20 .812 .639 .504 .181 .096 .063 .045 .034 027 .021 .017 .014

30 .853 .672 .530 .191 .102 .067 .048 .036_ .029 .023 .018 .015

Table 10

- P(H_° , Cs , CN) for Example (43)-(44)

.002 .01 .02 .1 .2 .3 .4 .5 .6 .7 .8 .9

L 2 .684 .706 .735 .960 1.242 1.525 1.807 2.089 2.371 2.653 2.935 3.217

4 .262 .285 .313 .538 .821 1.103 1.385 1.667 1.949 2.231 2.513 2.795

10 .099 .121 .149 .375 .657 .939 1.221 1.503 1.786 2.068 2.350 2.632

20 .085 .108 .136 .362 .644 .926 1.208 1.490 1.772 2.054 2.336 2.619

130 .082 .104 .131 .349 .621 .893 1.165 1.437 1.710 1.982 2.254, 2.526

Table 11

e(H) for Example (43)-(44)

From tables 7, 8, and 9, we observe that the number of the quantiles affects the
performance induced by the robust filter He, only for S values below .02. Then, the

performance improves as the number of the quantiles increases, with highest effect on

e" the efficiency E(H , f, f C, CN) and for C < .01. The reason for this behavior
-s o N s

. is that, the more accurate representation of the noise spectral density matrix f oN

resulting from the increased number of quantiles, drives the robust filter He close

0
to_ , only for small contamination E . For relatively large such contamination, theS
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accuracy in the representation of foN has little effect on the design of the robust

filter H . Comparing tables 8 and 9, with tables 10 and 11, we see again the striking

" effect of the robust filter, as compared to the optimal at the nominals (fos f oN)

0
- filter, H

U

LI
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A.1

Appendix

!7.;a IProof of the Lemma

Define the set A {x : x C A, g(x) > 01. If f + g > 0, a.e. in A, then f > 0,
ggg

a.e. in A - A . Define,

11 g(B) g dm ; BCA

r9
1 £ dm B BC[A-A (

JB 8 A9

1;- * (A) A[i+A] -I ; A e[-l, )

The measures p g and 1f in (A.1) are positive measures, and the function * is
clearly concave. We now write,

JA _&-dm = (i-dm + f •( dm"; f+g f
fA fg L g

A A

Since the function * is concave, we apply Jensen's inequality in (A.2), and
we obtain:

L din ' dm < (Ag (A f d
f+g 9 gd

%'

% °.

% .-
Ag

(AA9

"o . •

%9



A.2

.:. ii(A) .j d Ug lJ(A-Ag) .- di'

1" "9- (A99j (A A- f

9 +

g g ) f 9 d i i ( f f
A A-
g g

gdm.• fdm / gdm • fdm gdm fdm
A fA-, fA - A

Sgdm + fdm f gdm + fdm < ffdm + gdm

_, . g g g

- (A.3)

with equality in all parts iff f cg; a.e. in A

The proof of the lemma is now complete.

Proof of Corollary 2

-1 -Let i(A), AI (B), xi(A + B-), i = l,...,n be the ordered elgenvalues of A, B

and A- 1 + B respectively. Let {ai, i=l,...nl , {lb,=l,...n}, {c., i=l,...n} be

the associated orthonormal sets of eigenvectors of A, B and A- + B- . Then, we can

write:

n T

A1  n *2)1 A 1 aT

• ... n- _

'-'. i=I

B = X (B) b

•=1

and

n n
tr(A + -~- B______ 

________

___ +B J=1 (A +B )c
-- i

n

" n ,T 2 n T (A.4)

k i-i ;2 =C(A)(c. a k2+_ AA+(B)(c i  tz)2

* . . . . - * A *A- . * - -
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The relationships

n T 2 n ( 4 T 2
(-Si = ( -)=1; Vk, Vi

k=l i=l

n2 n T 2 T 2

-. trA +B _) _ ; : (s_ i _k) . I,, (A.5):

• " =i J=l

and the convexity of the last expression in (A.4) with respect to f o,

• ; ~~=l z-- A l() +  I B

kk

n 2 T 2 *

i If e appy thele(s-for Y

n n
wr 1 a s A Ak c i

k=l =lSn n

n nT 2,
: "-"~~~ Atk (B (-cia) --I A )

" t 1 tl

"" ;where {Ak any sets: U Akt A, Akt. mutually exclusive, we obtain:

].ilk=l t=l



A.4

n ,T 2 *T 2

-:- k b)

A k 11(A ) + X l ( B ) <

n n n "
.T 2 ,T 2

"Ak(A) (c i  )  (c. b ) +

k- Z-=- i=i

k~l t~l -1

"' k t T 2 , ) 1 -
: + (x~AeB) ~ ( -ak *Tbj) ]

= £=ii=l

xAt -

k~l

- [(trA)- + (trBf' (A.6)

U From (A.4), (A.5), and (A.6) we conclude the desired result. -

Proof of Theorem A

We will present the proof in two parts. In part 1, we will prove that (A.1)

and (A.2) are sufficient solutions for the optimization problem (3D), and that they

satisfy the supremum of em(f, fN) on F', x FN. In part 2, we will prove that
-N s NEN

a solution on F' x F' is sufficient for the optimization problem on FL  x FL,EN.
S,E£s N,CN is LIE

Part 1

Let us define:
n

x() A n - E xis()
i=l

(A.7)
n

XN(W) A n-l x iN ("M)

- -
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1. If condition (11) holds, then,

Tr s 2
w1.As -s is 2I1N iN

(A.8)

n-lI W2 = N(w) d> max W2(1-E s  X 0s(W), (1-EN  X 0N(W dw

The relationships in (A.8) show that there exist admissible eigenfunctions

* X (w) and X (w), as in (A.7), such that:
s N

X AS(w) > (1-es) is (w) ; V we[-r, ]

!- ,l

W21 w XN(w) > (1-F-) X0(w) ; V wF[-r,iT]
2 1N.S is

X (1-C XlN(w) ; V ws[-rrw]

' W-l W 2 Xs (w) > (1-CN X0N(w) ; V [-n,n1

Therefore, a choice of eigenfunctions as in (A.1) is fully consistent witil the

* constraints of the optimization problem (3D). Also, the value of the objective

- function eb(f, f in the problem (3D) becomes then,

eb(fe f)=( 27 T) W W (W + W)-l (A.9)
b s'-N 1 2 1 2

Inversely, applying the lemma and corollary 1, we obtain:

F'._ -" eb (f , fN

7 -s -1--N 1 " n n n n -1

=(27)1 X[ A(w X(wj[() w dw <

< (2i -I)W [f W2 A3djfiN -i)~~i~ wd ~ i~~w,,: is- _ ' - - is + '-.

7T .- i-1 i-r =1

_T-l7 -l r= T l
=(271) W W2 (W + w) (A .10)
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From (A.9) and (A.10) we clearly conclude the sufficiency of the solution (A.1)

in theorem A, for the optimization problem (3D).

2. Let condition (12) hold. Considering the functions in (A.7), and the objective

function eb (fs, f ) in the optimization problem (3D), we have due to the lemma:
b--s -N

(2n) eb(4, f ) N< n As(W)--NM [XS(M + XNM I dw (A.11)
-N7

On the other hand, for the admissible eigenfunctions (X e()} and {Xe (W)} in

is IN

solution (A.2), we have:
.'.T

(2Tr) eb(feS, 8~ = Y ~w.~w) [)Ls(w) ew.e e + Xe(w)1-l dw (A.12)

7T

We will prove that for any admissible functions Xs(w), AN(w), as in (A.7), we

. have:

X M_ X (W) [X (W) + -I dw <_) [MeP ) + XN(W) I- dw (A.13)J s N N N s N

I We first observe that due to the condition in (12), the sufficient solution in

(A.2) is such that:

-< w2 wl , V 
<  WV1 w2  V < 1 (A.14)

Due to (A.14) we also conclude that the sets E, E in (A.2) are such that:

E fl Ew 0 (A.15)

r,2c E Ec (A.16)
P VP V( II

(A.15) is true, because if not, there would exist some W in E4C E V such that

Sand , which contradicts (A.14).
N (X ) 0N s X()

lN Is
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(A.16) follows from (A.15). Due to (A.15) and (A.16), we conclude that the interval

[-I7,Tr] can be subdivided into the three disjoint and exhaustive sets E E cA Ec

Finally, from the solution in (A.2), and the constraints in (3D), we cleaely obtain

that for any admissible functions A (w) and AN(W), as in (A.7), we have:N N

x (W) _ Xe(w) > 0 ; v E c
-* 

(A.17)

x (W) _ Xe(W) > 0 V wE e
N N V

We now concentrate on the proof of (A.13). Due to (A.14) - (A.16), we easily

- obtain:

( (W) (W) + ()1 dw- Xe(W) Xe(W)[Le(W) + Ae(W) dw;

(W)Xe( 2X W(ew) -12 I  N)X ) [(W)_X(w) ]+(P-e-l) )Xo e
--- ] N(-)N(W)]+ (ip- N os N dN,

SoIN(W) + [X (W) ) e]e(W)+ + [)L(w) - () -

'" ( A+lW)(1-2 [A s((i ) + s ) N M 2 [ + (W)-X e M)5X sWe~)[ (W Ae(W)]+ s is N0-N + NI

-" 22A 2A. e8

) s N( N (1+fV l) (W)+A - )H- (v-W ) (1-s )A (wHE ()A (w)I[X(/)~(W]Is~ N ls) 1  N N s is NI
(-E )(NX 5W) + e1C X W + N) N(W]+[ () X()

l~o(W +[X (W)-A(w)] + [X(w)_e(w)]

(A.18)

Considering expression (A.18), we now make the following observations.



A. 8

A(Li) e (w) > 0 ; eE
N N

PV < )1 2(P 1) -2 < (V+1) -2 4i2 (jPi--) -I(1N) 0lN(w) XN(W)_ Xew)<

(v-i-) -2(+1) (Il X ~ (w)[ _X()ewl V we EN iN' N N 11

X (w) X(w) > 0 ;V wOEs SV

P< I V~ ( -2 < (P+1) -2 v(v+l) 1(1) X0 (w) PA (w)- x )) <

<-2 (vil(- )X (w) [X (W)_Ae(w)] ;Vwe E
S is s S V

XNW XN - s s

(1-C ))L (w) > P(1c X 0 (w) (1-C) X (w) > v(l-e Ml0 ()~Vws is N iN ' N iN S is

(A.19)

([(l-c5 )A
0 (w)]1 [X (w)AI w -

Sis N N < (v-i-i (1-C )xA (w) [A (w) -Ae(,), <

*(1-C )Ao (w) + (1-C )X (W) -2 is N 0
s is N iN <qV I 2 H - x w +( - H X ( ) X ~ )

s is N iN N N

;vwe Ec nEc

U[1-C )A0 (W)1 [A (W)-A (w)]
* ~~~ (1- NA (w + l S)AN < (pii ls),o (w) [X(w) - A(w)I < *

-2 0 0e

;Vwe EcflEc4
PV

*To simplify our notation, we eliminate the integration variable w, and we denote:

A e A e 0
x xA-X s y A N-AN, z 1  (1+1) (1-E N)AlIN

;V w (A.20)

z (v+l)(i-e )xo , (1-c )Ao +1- (s)xoN
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In view of the conditions in (A.19) and the notation in (A.20), we obtain from

(A.18):

T A xy + (o+1) 2  y z + ( 1+)- 2  x z 1
"-" k s N s N x+y+z

• / I* 2 f - 2 -2 -2

xy+(V+l)-2 y z3 +(1+)-2 x z xy + (+)-2y z 2 +(j+)x z2

x+y+z3  + x+y+z 2
!"E c C E c  E

(A.21)

We observe that all the integrands in the upper bound in (A.21) have the form:

-2 -2" W w2 + (V+l) w2 w3 + (+l) w w3
f(wI, w2, w3) i + + (A.22)

u The function f(wl, w2, w3) above is concave in the region determined by

w 1 + w2 + w3 > 0, and w3 > 0 ; for all V and p such that p V < 1. Therefore, ifS1

is some w set such that the above conditions for concavity hold, (where wl, w2, w3

E functions of w) an application of Jensen's inequality results in the following expression:

f'f(wl, w2 , w3) dw < f W 1 , w 2 , w 3  (A.23)

Considering now the functions defined in (A.20), selecting 9 = [-X], w1 = x, w2 =y

= 1 + z 1 + z 1 , and applying (A.23) to (A.22), we obtain:
7. 3 1 E 2 E V Ec0 Ec

1V
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1 e ee 1 e 1x X fr y+(v+l) 2 J~ y f w3+(P+) 2  x 3J N s+AN AsAN [ s+A] < TTT

N17X+ 1- + -Tr

* ;since x = y 0 (A.24)

-Tr _7.

We have now proved that (A.1) and (A.2) are sufficient solutions for the optimiza-

tion problem (3D). Those solutions clearly satisfy the condition for equality in

expression (9); thus they are also sufficient for the supremum of e (f., f.) on

F' x F , with no restrictions on eigenvectors.

Part 2

Under the conditions (10) in the theorem, the classes FP and F are non-

empty, and FsC F , F1 ,4C FL . Furthermore, the restrictions through whichSEC Liles NOE L FL
s 5 N ' N

the classes F' and F are defined do not imply restrictions on the eigenvectors""S'e s NE

" of the corresponding spectral density matrices. Therefore, for any sets {A is(w);l<i<n}

* and {XiN (w);l<i<n} of ordered eigenfunctions, the eigenvectors of the corresponding

spectral density matrices f (w) and f () can be selected arbitrarily for the supremum
-s -N

of e (f , fN) on F' x F Let now f () be some spectral density matrix in
m -s -N s s  N-E -s

F - F' ,and let f () be some spectral density matrix in F - P where
L, Ble-NLe ' N 'N

s s N N
- if A and B are two sets, A-B denotes the set with elements in A but not in B. Let

S M(); l<<n} and { (w); l<i<nl be the sets of ordered eigenfunctions of the
is iN -

matrices f (w) and f N() respectively. Then, for every i, there exist A (w) and B (w)

. subsets of [-',r], such that Xis () < (l-es) A ls(W); V we Ai( ) and Xj (i ) < (1-C N) ;

V we B (w); where A (W) and B (W) are necessarily nonempty, and for i < n some of the
i n n

6 sets A i() and Bi (w) may be empty. For any i such that Ai (w) is nonempty, we construct

a new eigenfunction A is(w), such that Xis(w) M X is(W); V We((-TrT1-A (w)), and

L

:1
.... .... ... • . .... . . . . . . . . . . . . . . . . . . . . .
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B..

. A (i(W) (l-es) A (w); V WE A (w). Similarly, we construct the new elgenfunction
is s is i

(*), such that A* (W) (W); V WE ([-1,1] - B (W)) and (W) = (1-E XN(W)
)tiN N N i iN N N

V WE B (M). The so constructed sets {X (W); l<i<n} and {X (W); l_<<n} correspond
*i. is -iN

to spectral density matrices that are contained in F' and F' respectively.
s N

In addition, we have:

S .- n -1 n -1

e (f-, f_) < (2) A(w) +(W) I dw
-s < (27) is i N

S-* (w) +

< (2r A MLAS(~ .. U~i dw

-71 i s-1=1

; where the right hand side of the double inequality above is due to the fact that

[x + y increases monotonically with increasing x and y, and due to the fact

that the {l (W); l<i<n} and {X (W); l<i<n} constructions have this effect as compared
is IN -

to the sets {A is(); i<i<nl and { iN(W); l<i<n}.

" Thus, it is sufficicent to optimize e(f , f ) on F' x F'
"-""-N s,%s  N,SN

pProof of Theorem B
As in part 2, in the proof of theorem A, we have again that it is sufficient to

- optimize e(f , f) on F' x F . Here, we will first show that the solution (B.1)

is sufficient for the optimization problem (4A). Then, we will show that this solution

- is also sufficient for the supremum of e (f f on F' x F
-s -N SPs Q

Let A (W) and X () be as in (A.7). Then, for any admissible sets {A (W)
s N is

(X iN()}, we have that (A.21) holds. Thus, (A.21) also holds if {A is()} and

(A 0(,M are substituted by (A (W)) and {AeN(w)J in (B.1). For simplicity in notation,

we will denote ci as cj ; for all J, and as in the proof of theorem A, we will prove

that:
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IK'
*XlW - l(~ -1 dw < A:e(W) Ae(W) [Xe(w) + X( dw (A.25)

J 7 [A (w + N - -7ITN s

Indeed, from the definition of A wM and X M) in (B.1), we easily obtain:2

[)J(w + f1 w~ 1N w XA(W) Xe(w)[ALe(w) + Xe(w)]1 di

AN~ -1
-=dw-n (A.26)X (W) A+X ()C +X.

SApplying the lemma to expression (A.26), we obtain.

-l -1 -k e e [e,W+ Xw]-1
[A l(w) + XA (w)] dw - I)AxwIA~) ~) dw <

S N 8 N s N

Ar (W)dW l N() dw x
IIn: -1

-~ ( (W)dL &iA + (w) dw - nX
j=O .\A fj

k k 2
wj 1 ~~ ~ n (y -X)

n ~ Ccjx+Y3  +

-l (y -X1  -1c(y 1 -!1)

E c Ci)(C iY -x+ici C 0~)(C
Jj jrj, +n J'vC o (c (c iy -'i +xi

(A.27)

;where yj AJ (A.28)

- jl
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' Since A() > (0- (W)

s - s is

y>x0 y -X > 0 ;J: pc <:i y o

k-(A.29)

yj xi n w 1
j.0 J=O

Now, the expression in (A.27) can be bounded from above by

1'.n (.+)-2 (4+l)cj+(yj-x.)
.n -CI-,1 ,=0

which, due to corollary 1 in the paper, is bounded from above by:

k k

U -l ~'v2  ~ (h1+l)cj] [ Y2 ( j)
n-l(P+) - 2  k k (A.30)

,Z (11+l)cj + E (yJ _Xj• " j=0 o

Due to (A.29), the expression in (A.30) equals zero, and (A.25) is now proved. That

proves that (B.1) is a sufficient solution for the optimization problem (4A). But,

this solution clearly satisfies the conditions for equality in (9). Thus, it is also

sufficient for the optimization of e (f f on F x F.
m-s' -7Ns'

*. Proof of Theorem C

As in the proof of theorem B, we will prove that (A.25) holds, for the Xe(w)

A e(W) selections as in (C.1), and for all admissible Xs (W), AN(w)} pairs.
N N

Since, k

sAi A 0 fijA
. ~si ij U Asj [-,

j=l

m

A R Aj "0; V i~j , [
~J=l

i =1
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it is clear that the km sets A sif ANJ , i~l,...,k,j1,...,m are mutually exclusive

and exhaustive. Thus,

X .. X NsIXN M + XN) - dw = J s(u) XN( ) X s(W) + XN()]- dw

S- r j1 A sj

k Xs(J)Ad +  XN(W)dW k n- I  (w)dw

5,1J- - =_ _ _ __ _ _ _

i~i A x(w)d +f XN W dw i~ -1C 8 + j.1sNJln c s + XN(w) dw
sj sj 1I Asif ANe

I e(W) Xe(W) [)e(w) + X( ]ldw (A.31)
.4s N s XNw)

I. -T"

; where the inequality in (A.31) is due to the lemma.

Thus, the inequality (A.25) holds in this case, and the proof is complete, for

U the problem (5A). The solution satisfies the condition for equality in (9), thus it

is sufficient for the optimization of emCfs, fN) on F x F

rn- -N

Proof of Theorem i

a.

Expression (26) is easily derived, by substitution of solution (A.1) in theorem

A, in (21).

Let now condition (12) be satisfied. Then, directly from solution (A.2) in

theorem A, and from the proven (in the proof of theorem A) fact that p V < 1,

we have:

.. .. '.. _.-........ .._ _ .... .. .. ,. . ".. ....... ..........-........ . . .. : _ • . ,m m
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(1-c )X 0 )
;L~): ism

(1-E )X0 (W)-

S~~~~~ N lNXN()

* (W) wp (1-)A(w) -

(1-c ) 0 (W)

(1N)X0N)XIN~w

(1e (W) ( )0 ) -i)
______N IN [<vf ;s Is.331

IC)X0(1- + )A0 M( 0() (1-C ))0o ()
a s is NW IN N IsN <~

< m ~ .1(1-6 X0 (

(1- )X0 (W)
NN iN

)xO (W

s N iN

X*()(1-c ))0 (()
8 is W A < s3I5<V)

(1-E (W)
1 ~ N N

'- W <. a * - < V (k.34)
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From (A.32), (A.33), (A.34), and (A.35), we clearly obtain.

N rn ( ( = V[l+v]- achieved at all w: (1- ()> (A.36)

A ( )+XN() (e ) 0 N(m)
w)A N M I N )AiN

pAe (w) (lE) 0 ()

min(e ' e - i[if -  ; achieved at all w: S i < (A.37)\~(- ) (I+x~m M
S N (l-N) XIN(W)

Due to the fact that the infimum in (21) is a linear programming problem, and I
due to (A.36) and (A.37), we easily obtain by substitution the result in (27).

b.

By substitution of the solution (B.1) in theorem B, we obtain:

X e k "

eN~w) 1 I M) (A.38)

Ae (W) k x

e ( = A o) (A.39)

a N j=O j~

From the definition of the x s in theorem B, and from (A.38), we obtain:

min N ° + max (x 0 C-1 (.40)
e-im A (,)+,e M) J* : x >Vcj

a N j

Finally, due to the fact that the infimum in (21) is a linear programming

problem, and due to (A.40), we obtain the result in (28).

. Without lack in generality, we will consider the special solution (C.2), in

r.

-. • o . • .. • .°
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theorem C. We easily find then, by substitution:

-- 1

e (mW -CR P (ANn As j

s+ 2 c~ -p(A~ A ) V-'(A~) ] ; t C A4 (A.42)
el(,)+1,(e =i s

From (A.41), (A.42), and (21), we easily find the expression (29), by direct

substitution.

Proof of Theorem 2

* Let us first consider the conditions (10) in theorem A, where W and W are, W 2

given by (3A). From those conditions, we directly obtain.

-14

> 1 + 2n Ws f n Xos(w) dw - 2 W
• .:, _7r ..

"- (A.43)

+l 1 + 2n WN n X -(2w °w 2nW

Let us now define,
p

y (27r)-l [W + e[IE] W]s .8 -

(2w)-l [WON + -N (.N WN]

f °(w) n X1 (w) (A.44)
f (W) =n Ais(W

A2 AlNw

.7.7r

F(yx) iw max (y fl (), x f2 (w)) dw

" .". - . - . -..- -- ----- .



A. 18

Then, the quantities y, x defined above are monotonically increasing with Cs" CN

grespectively, the conditions (A.43) in terms of y and x become,

( Tr
• . >( n4 s(w) d~i

U (A.45)7r :
.. x > (2 -2 . o

x > (27r)f nXlN(W) dw

.- and the acceptable (e , CN) region corresponds to,S N

(y, x) . F(y, x) > 1 (A.46)

From the expression of F(y, x) in (A.44), it is clear that for the satisfaction of

(A.46), it is necessary that:

max max (I, • y f (w) dw > I (A.47)

_ where, due to conditions (10):

%°m"'Y f f ( W) dw < I (A.48)

17r

From (A.47) and (A.48) we conclude that for the satisfaction of (A.46) it is

necessary that:

(A.49)

Y-- 2 (m-W:/) f2) dw] - 1

.f 7
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For the satisfaction of both the conditions (A.45) and (A.49), we finally

require:

I W 'i s

(A.50)

x > n iN (W)dw] max mn g(), (27)2 D[ n X "d

; where g(w) and D are given by (38). The regions [BN, 1] and [B s  1] are obtained

" by substitution of the y and x in (A.44), in the conditions (A.50).

Let us now define,

7r
G(z) max (z f f2(w)) d( (A.51)

Then, we can trivially write,

F(y, x) x G (A.52)

We will define z = , and we will use z as a parameter. The breakdown curve

is determined by the equation

F(y, x) 1

in a parametrized form, this equation becomes,

x(z) = G (z)
with (A.53)

y(z) = zG (z)

Let us first study the function G(z); 0 < z < ®. We first define,

- * . . -- * * -* . .* * ..-- . . .
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E F : z > f2(w) (A. 54)

S and clearly,

Ez+dz -E ;V z, dz > 0 (A.55)

Due to the conditions satisfied by the function g(w) = fl(W) f2 1(W), we have that,

eim E Ez ; z> 0 (A.56)

dz-*O z+dz z

Also, we can write:

7r

G(z) = [z fl(W) - f 2 (w) dw+ f 2() dw (A.57)

From (A.57), and due to (A.55) and (A.56), we easily find,

G ( G(z+dz)-G(z) f f(w) dw >0Vz>0

zz dz 1dz- 0f

z /£(A.58)

f fl(w)d - fl(w) dw(

z2 z tim f z+dz z > 0
az dz-* dz--

Now, from (A.53) we find in a straightforward fashion:

dy -=- z -G(z) [- G(z)]
dx(z) 9z

(A.59)

d2yz - 2 G (z) [---G(z)]

d (z) ra 12z

2 [- GzJ - G(z) i G(z)

Due to expressions (A.58), we finally obtain:

. . . . . . . . . . . .. . . . . . .. . !.
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dx(z) JE f1 (W) &2I ' d( )  
(A. 60)

z 
s

<0; ' z > 0 (A.61)
d x(z)

Due to (A.60) and (A.61) above, we conclude that in terms of y and x variables,

the breakdown curve is monotone and concave and that (considering also (A.54)):

dy(z)c
dx(z) z 0

(A.62)

dy(z) 0
dx(z) z +

i But z 0 corresponds to EN 1, and z + corresponds to C 1. Also, y and

* x are monotonic with respect to E and E respectively. Thus, the conclusions in

" the theorem.

-MI

4.

"* * * - , - .

, . °. ...
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